28,034 research outputs found

    Laboratory studies of Kapton degradation in an oxygen ion beam

    Get PDF
    Results are presented from a preliminary laboratory investigation of the degradation of the widely used polyimide Kapton under oxygen ion bombardment. Recent space shuttle flights have shown that Kapton and some other materials exposed to the apparent ram flow of residual atmosphere (at orbital velocity in low Earth orbit) lose mass and change their optical properties. It was hypothesized that these changes are caused by chemical interaction with atomic oxygen, aided by the 5-eV impact energy of atmospheric oxygen atoms in the ram. The reaction rate under O(+) bombardment seemed to be independent of incident energy over a wide range of energies. Although the flux of thermal ions in this experiment was much greater than the accelerated flux, the observed Kapton degradation was limited to the beam area and ram flow direction. This is consistent with an activation energy above the thermal energies but well below the beam energies. The results reproduce well the material loss, optical changes, SEM surface structure, and ram directionality of the samples returned by the shuttle. These factors, along with the lack of degradation under argon ion bombardment, are convincing evidence for ram flow oxidation as the mechanism of degradation

    Ram-wake effects on plasma current collection of the PIX 2 Langmuir probe

    Get PDF
    The Plasma Interaction Experiment 2 (PIX 2) Langmuir probe readings of the same polar magnetospheric regions taken on consecutive orbits showed occasional apparent densities as much as 10 times lower than the average, although each pass clearly showed density structures related to the day/night boundary. At other points in the orbit, Langmuir probe currents varied by as much as a factor of 20 on a time scale of minutes. The hypothesis is advanced that these apparent inconsistencies in Langmuir probe current are the results of the probe's orientation relative to the body of the spacecraft and the velocity vector. Theoretical studies predict a possible depletion in collected electron current by a factor of 100 in the wake. Experimental results from other spacecraft indicate that a wake electron depletion by a factor of 10 or so is realistic. This amount of depletion is consistent with the PIX 2 data if the spacecraft was rotating. Both the Sun sensor and temperature sensor data on PIX 2 show a complex variation consistent with rotation of the Langmuir probe into and out of the spacecraft wake on a time scale of minutes. Furthermore, Langmuir probe data taken when the probe was not in the spacecraft wake are consistent from orbit to orbit. This supports the interpretation that ram/wake effects may be the source of apparent discrepancies at other orientations

    Laboratory degradation of Kapton in a low energy oxygen ion beam

    Get PDF
    An atomic oxygen ion beam, accelerated from a tunable microwave resonant cavity, was used at Lewis Research Center to bombard samples of the widely used polyimide Kapton. The Kapton experienced degradation and mass loss at high rates, which may be comparable to those found in Space Shuttle operations if the activation energy supplied by the beam enabled surface reactions with the ambient oxygen. The simulation reproduced the directionality (ram-wake dependence) of the degradation, the change in optical properties of the degraded materials, and the structure seen in scanning electron micrographs of samples returned on the Shuttle Trails with a substituted argon ion beam produced no rapid degradation. Energy Dispersive X-ray Analysis (EDAX) showed significant surface composition changes in all bombarded samples. Mass loss rates and surface composition changes are discussed in terms of the possible oxidation chemistry of the interaction. Finally, the question of how the harmful degradation of materials in low Earth orbit can be minimized is addressed

    The voltage threshold for arcing for solar cells in LEO: Flight and ground test results

    Get PDF
    Ground and flight results of solar cell arcing in low Earth orbit (LEO) conditions are compared and interpreted. It is shown that an apparent voltage threshold for arcing may be produced by a strong power law dependence of arc rate on voltage, combined with a limited observation time. The change in this apparent threshold with plasma density is a reflection of the density dependence of the arc rate. A nearly linear dependence of arc rate on density is inferred from the data. A real voltage threshold for arcing for 2 by 2 cm solar cells may exist however, independent of plasma density, near -230 V relative to the plasma. Here, arc rates may change by more than an order of magnitude for a change of only 30 V in array potential. For 5.9 by 5.9 solar cells, the voltage dependence of the arc rate is steeper, and the data are insufficient to indicate the existence of an arcing increased by an atomic oxygen plasma, as is found in LEO, and by arcing from the backs of welded-through substrates

    Surface phenomena in plasma environments

    Get PDF
    Plasma interactions and their effects on materials depend on a number of factors, including the pre-existing environment, the properties of surface materials and the characteristics of the system. An additional dimension is the question of mission: some payloads may be much more sensitive to plasma interactions than others. As an example, a payload whose objective is to measure the ambient environment will be more sensitive to any effects than will a power system. Material specific effects include charging and its associated effects, which can result in short- and long-term damage. Selection of materials for a particular application requires consideration of all factors and assessment of effects due to all causes. Proper selection and suitability determination requires analysis to identify the actual environment combined with testing under exposure to single and combined environment factors

    Field Driven Thermostated System : A Non-Linear Multi-Baker Map

    Get PDF
    In this paper, we discuss a simple model for a field driven, thermostated random walk that is constructed by a suitable generalization of a multi-baker map. The map is a usual multi-baker, but perturbed by a thermostated external field that has many of the properties of the fields used in systems with Gaussian thermostats. For small values of the driving field, the map is hyperbolic and has a unique SRB measure that we solve analytically to first order in the field parameter. We then compute the positive and negative Lyapunov exponents to second order and discuss their relation to the transport properties. For higher values of the parameter, this system becomes non-hyperbolic and posseses an attractive fixed point.Comment: 6 pages + 5 figures, to appear in Phys. Rev.

    Electrical system/environment interactions on the planet Mars

    Get PDF
    The Martian environment is a diverse environment with which systems will interact in numerous ways. Preliminary thoughts on electrical system/environment interactions which might be of interest to system designers at all stages of system design are presented. These interactions are primarily related to electrical charging, contamination, and Martian surface sand and dust

    Analysis of ZDDP content and thermal decomposition in motor oils using NAA and NMR

    Get PDF
    Zinc dialkyldithiophosphates (ZDDPs) are one of the most common anti-wear additives present in commercially-available motor oils. The ZDDP concentrations of motor oils are most commonly determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). As part of an undergraduate research project, we have determined the Zn concentrations of eight commercially-available motor oils and one oil additive using neutron activation analysis (NAA), which has potential for greater accuracy and less sensitivity to matrix effects as compared to ICP-AES. The 31P nuclear magnetic resonance (31P-NMR) spectra were also obtained for several oil additive samples which have been heated to various temperatures in order to study the thermal decomposition of ZDDPs.Comment: Manuscript has been accepted for publication in Physics Procedia as part of the proceedings of the 23rd International Conference on Application of Accelerators in Research and Industry (CAARI 2014

    Visual Search for Galaxies near the Northern Crossing of the Supergalactic plane by the Milky Way

    Get PDF
    We have visually examined twelve Palomar red Plates for galaxies at low Galactic latitude b, where the Supergalactic Plane (SGP) is crossed by the Galactic Plane (GP), at Galactic longitude l ~135 degrees. The catalogue consists of 2575 galaxy candidates, of which 462 have major axis diameters d >= 0.8 arc min (uncorrected for extinction). Galaxy candidates can be identified down to |b| ~ 0 degrees. One of our galaxy candidates (J24 = Dwingeloo 1) has recently been discovered independently in 21cm by Kraan-Korteweg et al. (1994) as a nearby galaxy. Comparisons with the structures seen in the IRAS and UGC catalogues are made. We compare the success rate of identifying galaxies using the IRAS Point Source Catalogue under different colour selection criteria. The criteria that require both the 60 micron and 100 micron fluxes to be of high quality, have the highest probability of selecting a galaxy (with d >= 0.6 arc min), but at the expense of selecting a smaller number of galaxies in total.Comment: uuencoded compressed postscript, without figures. The figures are available at http://www.ast.cam.ac.uk/preprint/PrePrint.htm
    corecore